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For spatial free vibration of non-symmetric thin-walled circular curved beams, an
accurate displacement field is introduced by defining all displacement parameters at the
centroidal axis and three total potential energy functionals are consistently derived by
degenerating the potential energy for the elastic continuum to that for thin-walled curved
beams. The closed-form solutions are newly obtained for in-plane and out-of-plane free
vibration analysis of monosymmetric curved beams respectively. Also, two thin-walled
curved beam elements are developed using the third and fifth order Hermitian polynomials.
In order to illustrate the accuracy and the practical usefulness of the present method,
analytical and numerical solutions by this study are presented and compared with
previously published results or solutions by ABAQUS’ the shell element. Particularly,
effects of the thickness curvature as well as the inextensional condition are investigated on
free vibration of curved beams with monosymmetric and non-symmetric cross-sections.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Structural members having thin-walled curved open cross-sections, such as W section
channel and angle, offer a high performance with minimum weight. Also, the construction
cost of curved alignments associated with the substructuring has been found to be
significantly reduced by the advent of the curved girder system. The accurate prediction of
the natural frequencies corresponding to a vibration mode is of fundamental importance
in the design of the thin-walled structure. And considerable research on the free vibration
of curved beam element and curved girder bridge has been performed including effects of
various parameters such as various boundary conditions, the initial stress, shear
deformation, rotary inertia, extension of the neutral axis, elastic foundation, and variable
curvatures and cross-sections.

Raveendranath et al. [1] investigated the performance of a curved beam finite element
with coupled polynomial distribution for normal displacement and tangential displace-
ment for in-plane flexural vibration of arches and Oh et al. [2] derived the governing
equations of the free vibrations of non-circular arches based on the Timoshenko beam
theory. Also it may be pointed out that intensive research [1–19] have been done on the
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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in-plane free vibration of curved beams and particularly several authors [3–13] have
investigated phenomena of transition of in-plane modes from extensional into inexten-
sional that occur at certain combination of curvature and length of the beam. Other
researchers have studied on the out-of-plane free vibrations [20–27] or both in-plane and
out-of-plane free vibrations [28, 29] for curved beams. However, most of these researches
are confined to in-plane and out-of-plane vibration of thin-walled curved beams with only
symmetric cross-sections.

On the other hand, Gendy and Saleeb [30] developed a simple finite element model for
the free vibration analysis of spatial behavior of curved beams with arbitrary cross-section
considering the shear deformation and rotary inertia, but their study did not take into
account effects of the thickness–curvature and the inextensional constraint on the spatial
free vibration of curved beams. Also, Kim et al. [31, 32] presented a general theory for
spatial stability of non-symmetric thin-walled curved beams.

In this paper, based on the study of Kim et al., an improved energy formulation for
spatially coupled free vibration of non-symmetric thin-walled curved beams are
consistently presented by introducing Vlasov’s assumption and degenerating the total
potential energy for the elastic continuum to that for the curved beam. In order to
illustrate the accuracy and practical usefulness of this formulation, the analytical and
numerical solutions evaluated by this study are presented and compared with previously
published results or those by ABAQUS’ shell element [33]. The important points presented
are summarized as follows:

1. An accurate displacement field for the non-symmetric thin-walled cross-section is
introduced by defining all displacement parameters at the centroid axis and taking into
account the constant curvature.

2. Three potential energy functionals are consistently derived depending on whether the
thickness–curvature effect and the inextensional condition of the centroidal axis are
included or not.

3. The closed-form solutions are newly derived for in-plane and out-of-plane free
vibration analysis of monosymmetric curved beams, respectively.

4. Two thin-walled curved beam elements corresponding to extensional and inextensional
conditions are developed using the third and fifth order Hermitian polynomials.

5. The influences of the thickness–curvature effect and the inextensional condition on free
vibration behaviors of curved beams with various end supports are investigated using
the analytical and numerical method presented in the study.

2. PRINCIPLE OF VIRTUAL WORK

The global co-ordinates of the non-symmetric thin-walled curved beam are shown in
Figure 1. In this paper, the following assumptions are adopted:

1. The thin-walled curved beam is linearly elastic and prismatic.
2. The cross-section is rigid with respect to in-plane deformation except for warping

deformation.
3. The effects of shear deformations are negligible.

For free vibration analysis of the general continuum, the principle of virtual work is
expressed as follows:Z

V

tijdeij dV � o2

Z
V

rUidUi dV ¼
Z

S

TidUi dS; ð1Þ



Figure 1. Co-ordinated system of non-symmetric thin-walled curved beam.
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where tij and eij are the stress and linear strain, respectively; r the density; o
the circular frequency; Ti the surface force, Ui the displacement; and d denotes
‘‘virtual’’.

2.1. DISPLACEMENT FIELD OF THIN-WALLED CROSS-SECTION

Displacement parameters for the non-symmetric thin-walled cross-section defined
at the cylindrical co-cordinate system (x1; x2; x3) are shown in Figure 2. the x1-axis
coincides with the centroidal axis but x2; x3 are not necessarily principal inertia axes,
e2; e3 are components of the position vector of the shear center in the local co-ordinate.
Ux; Uy; Uz and o1; o2; o3 are rigid body translations and rotations of the cross-section
about x1; x2; and x3 axes, respectively. f is a warping parameter denoting the gradient
of the twisting angle yð¼ o1Þ: Under the assumption of the negligible shear deforma-
tion, rotational parameters o1; o3; f and an axial parameter g can be related with
respect to rigid body translations and a twisting angle by Frenet’s formula [34] as
follows:

o2 ¼ �U 0
z þ

Ux

R
; o3 ¼ U 0

y; ð2a; bÞ

f ¼ �y0 �
U 0

y

R
; g ¼ U 0

x þ
Uz

R
; ð2c; dÞ

where the superscript ‘prime’ denotes the derivative with respect to x1:
The displacement vector components of the arbitrary point on the thin-walled cross –

section can be written as follows:

U1 ¼ Ux � x2U
0
y � x3 U 0

z �
Ux

R

� �
� y0 þ

U 0
y

R

� �
fðx2; x3Þ; ð3aÞ

U2 ¼ Uy � x3y; U3 ¼ Uz þ x2y; ð3b; cÞ

where f is the normalized warping function defined at the centroid. Defining fs as the
warping function at the shear center and considering the general thin-walled beam theory,
a following relationship between f and fs is obtained:

f ¼ fs þ e2x3 � e3x2: ð4Þ



Figure 2. Notation for displacement parameters.
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section properties used in this study are defined as follows:

I2 ¼
Z

A

x2
3 dA; I3 ¼

Z
A

x2
2 dA; I23 ¼

Z
A

x2x3 dA;

If ¼
Z

A

f2 dA; If2 ¼
Z

A

fx3 dA; If3 ¼
Z

A

fx2 dA;

I222 ¼
Z

A

x3
3 dA; I223 ¼

Z
A

x2x
2
3 dA; I233 ¼

Z
A

x2
2x3 dA;

I333 ¼
Z

A

x3
2 dA; If22 ¼

Z
A

fx2
3 dA; If33 ¼

Z
A

fx2
2 dA;

If23 ¼
Z

A

fx3x2 dA; Iff2 ¼
Z

A

f2x3 dA; Iff3 ¼
Z

A

f2x2 dA; ð5Þ

where A; I2; I3; I23 and If are the cross-sectional area, the second moment of inertia about
x2 and x3 axes, product moment of inertia and the warping moment of inertia respectively.
I2fð¼ I2e2Þ and I3fð¼ �I3e3Þ the product moments of inertia due to the normalized
warping. Iijkði; j; k ¼ f; 2; 3Þ the third moments of inertia. The transformation equations
between section properties defined at the centroid–centroid axis and those at the centroid–
shear center axis may be referred to Reference [35].

2.2. STRAIN–DISPLACEMENT RELATIONS

The in-plane strains (e22; e33; e23) are negligible according to the assumption of rigid
deformation with respect to the in-plane. For the thin-walled curved beam, a complete set
of linear strain–displacement relations is expressed as follows:

e11 ¼ U1;1 þ
U3

R

� �
R

R þ x3

¼ U 0
x þ

Uz

R
� x2 U 00

y � y
R

� �
� x3 U 00

z � U 0
x

R

� �
� f y00 þ

U 00
y

R

� �� �
R

R þ x3
; ð6aÞ

2e12 ¼ U2;1
R

R þ x3
þ U1;2 ¼ �x3 y0 þ

U 0
y

R

� �
R

R þ x3
� y0 þ

U 0
y

R

� �
f;2; ð6bÞ
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2e13 ¼ U3;1 �
U1

R

� �
R

R þ x3
þ U1;3 ¼ x2 þ

f
R

� �
y0 þ

U 0
y

R

� �
R

R þ x3
� y0 þ

U 0
y

R

� �
f;3: ð6cÞ

2.3. TOTAL POTENTIAL ENERGY OF NON-SYMMETRIC THIN WALLED CURVED BEAMS

For the free vibration analysis of thin-walled curved beams vibrating harmonically, the
total potential energy P is expressed by the summation of the elastic strain energy U and
the kinetic energy T :

P ¼ U � T ; ð7Þ

where

U ¼ 1

2

Z
L

Z
A

½Ee211 þ 4Ge212 þ 4Ge213�
R þ x3

R
dA dx1; ð8aÞ

T ¼ 1

2
ro2

Z
L

Z
A

½U2
1 þ U2

2 þ U2
3 �

R þ x3

R
dA dx1; ð8bÞ

and E and G are Young’s modulus and shear modulus respectively.
Now three types of the energy functional are derived in order to investigate the

thickness-curvature effect as well as the inextensibility effect for the spatial free vibration
of curved beams.

CASE 1: Inclusion of both the extensibility and the thickness–curvature effects. CASE 1
means a general energy formulation including both the extensibility condition and the
thickness–curvature effect. In order to take into account the thickness–curvature effect
consistently, the following approximation is adopted:

R

R þ x3
	 1� x3

R
þ x2

3

R2
: ð9Þ

Substituting the linear strain equation (6) into equation (8a), considering equation (9)
and integrating over the cross-sectional area, the strain energy for the elastic continuum is
degenerated to that for non-symmetric thin-walled beams as follows:

Ucase 1 ¼ 1

2

Z L

0

EA U 0
x þ

Uz

R

� �� 2

þE bI2I2 U 00
z þ Uz

R2

� �2

þE bI3I3 U 00
y � y

R

� �2

þ E bIfIf y00 þ
U 00

y

R

� �2

þGJ y0 þ
U 0

y

R

� �2

þEcIf2If2 U 00
z þ Uz

R2

� �
y00 þ

U 00
y

R

� �
þ2EcIf3If3 U 00

y � y
R

� �
y00 þ

U 00
y

R

� �
þ 2EcI23I23 U 00

y � y
R

� �
U 00

z þ Uz

R2

� ��
dx1; ð10Þ

where

bI2I2 ¼ I2 �
I222

R
; bI3I3 ¼ I3 �

I233

R
; bIfIf ¼ If � Iff2

R
;

cIf2If2 ¼ If2 �
If22

R
; cIf3If3 ¼ If3 �

If23

R
; cI23I23 ¼ I23 �

I223

R
ð11Þ
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and J is the St Venant torsion constant. Making use of the similar procedure, the kinetic
energy T ; relevant to the non-symmetric cross-section is obtained as follows:

Tcase 1 ¼ 1

2
ro2

Z L

0

AðU2
x þ U2

y þ U2
z Þ

h
þeI0I0y2 þ eI2I2 U 0

z �
Ux

R

� �2

� 2
I2

R
Uyy

� 2
I2

R
Ux U 0

z �
Ux

R

� �
þ *I3U

02
y þ eIfIf y0 þ

U 0
y

R

� �2

þ 2fIf3If3U 0
y y0 þ

U 0
y

R

� �
þ 2 *If2 U 0

z �
Ux

R

� �
y0 þ

U 0
y

R

� �
� 2

If2

R
Ux y0 þ

U 0
y

R

� �
þ2

I223

R
U 0

y U 0
z �

Ux

R

� �
þ 2I23 U 0

yU 0
z �

2

R
UxU 0

y þ
1

R
Uzy

� ��
dx1; ð12Þ

where

eI2I2 ¼ I2 þ
I222

R
; eI3I3 ¼ I3 þ

I233

R
; eIfIf ¼ If þ Iff2

R
; eI0I0 ¼ I2 þ I3;

fIf2If2 ¼ If2 þ
If22

R
; fIf3If3 ¼ If3 þ

If23

R
; eI0I0 ¼ I0 þ

I222 þ I223

R
ð13Þ

and the underlined terms in equations (12), (16), (19), and (21) denote rotary inertia
effects.

CASE 2: Inclusion of the thickness-curvature effect under the inextensibility condition. A
kinematic constraint is introduced in order to investigate the inextensibility effect on free
vibration of curved beams as follows:

U 0
x þ

Uz

R
¼ 0: ð14Þ

Now, by using the inextensional condition (14), elimination of Uz in equations (10) and
(12) leads to

Ucase 2 ¼ 1

2

Z L

0

E bI2I2 RU
000

x þ U 0
x

R

� �2
"

þ E bI3I3 U 00
y � y

R

� �2

þE bIfIf y00 þ
U 00

y

R

� �2

þ GJ y0 þ
U 0

y

R

� �2

�2EcIf2If2 RU
000

x þ U 0
x

R

� �
y00 þ

U 00
y

R

� �
þ2EcIf3If3 U 00

y � y
R

� �
y00 þ

U 00
y

R

� �
� 2EcI23I23 U 00

y � y
R

� �
RU

000

x þ U 0
x

R

� ��
dx1; ð15Þ

and

Tcase 2 ¼ 1

2
ro2

Z L

0

AðU2
x þ U2

y þ R2U 02
x Þ

h
þ eI0I0y2 þ eI2I2 RU 00

x þ Ux

R

� �2

� 2
I2

R
Uyy

þ 2
I2

R
Ux RU 00

x þ Ux

R

� �
þ eI3I3U 02

y þ eIfIf y0 þ
U 0

y

R

� �2

þ 2fIf3If3U
0
y y0 þ

U 0
y

R

� �
� 2fIf2If2 RU 00

x þ Ux

R

� �
y0 þ

U 0
y

R

� �
� 2

If2

R
Ux y0 þ

U 0
y

R

� �
�2

I223

R
U 0

y RU 00
x þ Ux

R

� �
� 2I23 RU 00

x U 0
y þ

2

R
UxU 0

y þ U 0
xy

� ��
dx1 ð16Þ

CASE 3: Disregard of the thickness-curvature effect under the extensibility condition. In
case of disregarding the thickness–curvature effect but allowing the extensibility, the
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following approximations are used in this study:

R

R þ x3
	 1;

R þ x3

R
	 1: ð17a; bÞ

As a result, the integration of equations (8a) and (8b) over the cross-section under the
condition (17) leads to equations (18) and (19) respectively.

Ucase 3 ¼ 1

2

Z L

0

EA U 0
x þ

Uz

R

� �� 2

þEI2 U 00
z � U 0

x

R2

� �2

þEI3 U 00
y � y

R

� �2

þ EIf y00 þ
U 00

y

R

� �2

þGJ y0 þ
U 0

y

R

� �2

þ2EIf2 U 00
z � U 0

x

R

� �
y00 þ

U 00
y

R

� �
þ 2EIf3 U 00

y � y
R

� �
y00 þ

U 00
y

R

� �
þ 2EI23 U 00

y � y
R

� �
U 00

z � U 0
x

R

� �
� dx1; ð18Þ

and

Tcase 3 ¼ 1

2
ro2

Z L

0

AðU2
x þ U2

y þ U2
z Þ

h
þ I0y

2 þ I2 U 0
z �

Ux

R

� �2

þI3U
02
y þ If y0 þ

U 0
y

R

� �2

þ 2If3U
0
y y0 þ

U 0
y

R

� �
þ 2If2 U 0

z �
Ux

R

� �
y0 þ

U 0
y

R

� �
þ 2I23U 0

y U 0
z �

Ux

R

� ��
dx1:

ð19Þ

Here it should be noted that shear deformation effects due to shear forces are neglected
but all rotary inertia terms are included in deriving three energy functionals.

3. ANALYTICAL SOLUTION OF MONOSYMMETRIC THIN-WALLED CURVED BEAMS

For curved beams with the monosymmetric cross-section for x3 axis (see Figure 1), the
following section properties become zero:

I223 ¼ If2 ¼ If22 ¼ I23 ¼ 0 ð20Þ

so that in-plane and out-of-plane modes are decoupled. In this section, the closed-form
solutions for monosymmetric curved beams are newly derived for in-plane behaviors
under arbitrary boundary conditions and out-of-plane behaviors under the simply
supported condition respectively.

3.1. IN-PLANE FREE VIBRATION

Retaining only the terms relevant to the in-plane deformation of monosymmetric thin-
walled curved beams, three total potential energies derived in Section 2 is expressed as
follows:

Pcase 1
in ¼ 1

2

Z L

0

EA U 0
x þ

Uz

R

� �2
"

þ E bI2I2 U 00
z þ Uz

R2

� �2

�ro2

�
AðU2

x þ U2
z Þ

þeI2I2 U 0
z �

Ux

R

� �2

� 2
I2

R
Ux U 0

z �
Ux

R

� �
#
dx1; ð21aÞ
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Pcase 2
in ¼ 1

2

Z L

0

E bI2I2 RU
000

x þ U 0
x

R

� �2
"

� ro2

�
AðU2

x þ R2U 02
x Þ

þeI2I2 RU 00
x þ Ux

R

� �2

þ 2
I2

R
Ux RU 00

x þ Ux

R

� �
#
dx1; ð21bÞ

Pcase 3
in ¼ 1

2

Z L

0

EA U 0
x þ

Uz

R

� �2
"

þ EI2 U 00
z � U 0

x

R2

� �2

�ro2

�
AðU2

x þ U2
z Þ

þI2 U 0
z �

Ux

R

� �2
#
dx1; ð21cÞ

On the other hand, in order to investigate the extensional and inextensional in-plane
vibrational behaviors of curved beams with rectangular sections, Chidamparam and
Leissa [8] considered two potential energies neglecting the rotary inertia effects as follows:

Pextenstion ½8�
in ¼ 1

2

Z L

0

EA U 0
x þ

Uz

R

� �2
"

� EI2 U 00
z � U 0

x

R2

� �2

�ro2AðU2
x þ U2

z Þ
#
dx1; ð22aÞ

Pinextenstion ½8�
in ¼ 1

2

Z L

0

EI2 RU
000

x þ U 0
x

R

� �2
"

� ro2AðU2
x þ R2U 02

x Þ
#
dx1; ð22bÞ

Now, the derivation procedure of the closed-form solution is presented for in-plane
vibration behaviors. The following simultaneous ordinary differential equations and
boundary conditions are obtained by applying the varational principle to the potential
energy (21a).

EAU 00
x þ ro2 A þ

eI2I2
R2

þ 2
I2

R2

 !
Ux þ

EA

R
� ro2

eI2I2
R
� ro2 I2

R

 !
U 0

z ¼ 0; ð23aÞ

E bI2I2Uz
IV þ 2

E bI2I2
R2

þ ro2 eI2I2 !
U 00

z þ EA

R2
þ EbI2I2

R4
��ro2A

 !
Uz

þ EA

R
� ro2

eI2I2
R
� ro2 I2

R

 !
U 0

x ¼ 0; ð23bÞ

and

dUx ¼ 0 or EA U 0
x þ

Uz

R

� �
þ E bI2I2

R
U 00

z þ Uz

R2

� �
¼ 0 at x1 ¼ 0;L; ð24aÞ

dUz ¼ 0 or E #II2 U
000

z þ U 0
z

R2

� �
þ ro2 eI2I2 U 0

z �
Ux

R

� �
� ro2I2

Ux

R
¼ 0 at x1 ¼ 0;L; ð24bÞ

d �U 0
z þ

Ux

R

� �
¼ 0 or � E #II2 U 00

z þ Uz

R2

� �
¼ 0 at x1 ¼ 0;L; ð24cÞ

Elimination of Uz from equation (23) leads to the sixth order homogeneous differential
equation as follows:

Ux
VI þ a1Ux

IV þ a2U
00
x þ a3Ux ¼ 0; ð25Þ
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where

a1 ¼
1

EAbI2I2 ro2 bI2I2 A þ
eI2I2

R2
þ 2

I2

R2

 !
þ A 2

E bI2I2
R2

þ ro2 eI2I2
 !( )

; ð26aÞ

a2 ¼
1

E2AbI2I2 ro2 bI2I2 A þ
eI2I2

R2
þ 2

I2

R2

 !
2

E bI2I2
R2

þ ro2 eI2I2
 !(

� fEA � ro2ðeI2I2 þ I2Þg2

R2
þ EAðEAR2 þ E bI2I2 � ro2AR4

R4



; ð26bÞ

a3 ¼
ro2ðEAR2 þ E bI2I2 � ro2AÞ

R4E2AbI2I2 A þ
eI2I2

R2
þ 2

I2

R2

 !
: ð26cÞ

The general solution of equation (25) may be assumed as

Ux ¼
X6
i¼1

bie
cix1 ; ð27Þ

where ci are the roots of the characteristic equation (28).

c6 þ a1c
4 þ a2c

2 þ a3 ¼ 0: ð28Þ
In order to determine the root of above equation, let c2 ¼ S: Then equation (28) becomes
the cubic equation with respect to S which can be solved using the standard procedure
[25]. In addition, the mathematical expression for Uz can be easily obtained by substituting
equation (27) into equation (23) and integrating equation (23).

On the other hand, the six conditions corresponding to a specific boundary condition
can be determined using equation (24) consisting of the geometric and essential boundary
conditions. For example, in case of the simply supported condition, the boundary
condition is as follows:

Ux ¼ Uz ¼ U 00
z ¼ 0 at x1 ¼ 0;L: ð29Þ

Now by applying the six boundary conditions to expressions for Ux and Uz; the
following homogeneous equations are obtained:

KðxÞc ¼ 0 where c ¼ hc1; c2; c3; c4; c5; c6iT: ð30a; bÞ
Finally, natural frequencies of thin-walled curved beams can be determined form the

condition that the determinant of the matrix K is zero.

detjKðxÞj ¼ 0: ð31Þ
Also, natural frequencies of in-plane free vibration corresponding to CASE 2 and CASE

3 can be determined through the similar procedures.

3.2. OUT -OF-PLANE FREE VIBRATION

Now the out-of-plane free vibration problem of simply supported thin-walled curved
beams with monosymmetric sections is considered. By retaining terms only relevant to the
lateral displacement Uy and the torsional rotation y in equations (10) and (12), the total
potential energy of CASE 1 corresponding to out-of-plane vibration modes is obtained
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as follows:

Pcase 1
out ¼ 1

2

Z L

0

E bI3I3 U 00
y � y

R

� �2
"

þ GJ y0 þ
U 0

y

R

� �2

þE bIfIf y00 þ
U 00

y

R

� �2

þ 2EcIf3If3 U 00
y � y

R

� �
y00 þ

U 00
y

R

� �
� ro2

(
AU2

y þ eI0I0y2 þ eI3I3U 02
y :

þ eIfIf y0 þ
U 0

y

R

� �2

�2
I2

R
Uyyþ 2fIf3If3U 0

y y0 þ
U 0

y

R

� �)#
dx1 ð32aÞ

and for CASE 3

Pcase 3
out ¼ 1

2

Z L

0

EI3 U 00
y � y

R

� �2
"

þ GJ y0 þ
U 0

y

R

� �2

þEIf y00 þ
U 00

y

R

� �2

þ 2EIf3 U 00
y � y

R

� �
y00 þ

U 00
y

R

� �
� ro2

(
AU2

y þ eI0I0y2 þ I3U
02
y :

þIf y0 þ
U 0

y

R

� �2

þ2If3U 0
y y0 þ

U 0
y

R

� �)#
dx1: ð32bÞ

Then for out-of-plane vibration behavior under simply supported conditions, governing
equations and boundary conditions of CASE 1 are obtained as equations (33) and (34)
respectively.

E bI3I3 U IV
y � y00

R

� �
� GJ

U 00
y

R2
þ y00

R

� �
þ E bIfIf U IV

y

R2
þ yIV

R

 !
þ EcIf3If3

2

R
U IV

y þ yIV � y00

R2

� �
� ro2 AUy � eI3I3U 00

y � eIfIf U 00
y

R2
þ y00

R

� �
� I2

R
y�

� fIf3If3
2

R
U 00

y þ y00
� �


¼ 0; ð33aÞ

E bI3I3 y
R2

�
U 00

y

R

� �
� GJ

U 00
y

R
þ y00

� �
þ E bIfIf U IV

y

R
þ yIV

 !
þ EcIf3If3 U IV

y �
U 00

y

R2
� 2

R
y00

� �
� ro2 eI0I0y� eIfIf U 00

y

R
þ y00

� �
� I2

R
Uy�

� fIf3If3U
00
y



¼ 0: ð33bÞ

and

dUy ¼ 0; dy ¼ 0 at x1 ¼ 0;L; ð34a; bÞ

M3 ¼ E bI3I3 U 00
y � y

R

� �
þ EcIf3If3

U 00
y

R
þ y00

� �
¼ 0 at x1 ¼ 0;L; ð34cÞ

Mf ¼ E bIfIf U 00
y

R
þ y00

� �
þ EcIf3If3 U 00

y � y
R

� �
¼ 0 at x1 ¼ 0;L: ð34dÞ

The lateral displacement Uy and the torsional rotation y for lateral motion of simply
supported curved beams may be assumed as follows:

Uy ¼ B sinðlx1Þ; y ¼ D sinðlx1Þ; ð35Þ

where l ¼ np=L; n ¼ 1; 2; 3; . . . : It should be noticed that the above functions exactly
satisfy the geometric and essential boundary conditions as well as governing equations
because all equations contain only even derivative terms of Uy and y with respect to x1:
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In the above equation, B and D are unknown coefficients (amplitude) and l indicates
the vibration mode of the curved beam. After substituting displacement functions into
equation (33), the following characteristic equation is obtained by invoking the
stationarity of P with respect to the unknown coefficients:

K11 K12

K21 K22

" #
B

D

( )
¼

0

0

( )
; ð36Þ

where

K11 ¼ E bI3I3l4 þ GJ
l2

R2
þ E bIfIf l4

R2
þ 2EcIf3If3

l4

R
� ro2 A þ eI3I3l2 þ eIfIf l2

R2
þ 2fIf3If3

l2

R

� �
; ð37aÞ

K12 ¼ E bI3I3l2
R

þ GJ
l2

R
þ E bIfIf l4

R
þ EcIf3If3 l4 þ l2

R2

� �
� ro2 eIfIfl2

R
� I2

R
þ fIf3If3l

2

� �
; ð37bÞ

K21 ¼ K12; ð37cÞ

K22 ¼ E bI3I3 1
R2

þ GJl2 þ E bIfIfl4 þ 2EcIf3If3
l2

R
� ro2ðeI0I0 þ eIfIfl2Þ: ð37dÞ

For non-trivial solution, a quadratic equation for o2 is obtained by equating the
determinant of equation (36) to zero.

C1o4 þ C2o2 þ C3 ¼ 0; ð38Þ

where

C1 ¼ r2½R2 eI3I3 eIfIfl4 þ R2 eI3I3eI0I0l2 þ R2A eIfIfl2 þ 2I2 eIfIfl2 þ eI0I0 eIfIfl2
þ 2RI2fIf3If3l

2 � R2fIf3If3
2l4 þ 2ReI0I0fIf3If3l

2 � I22 þ R2AeI0I0�; ð39aÞ

C2 ¼ � r
R2

½R4E bIfIfeI3I3l6 � 2R4EcIf3If3fIf3If3l
6 þ R4E bI3I3 eIfIfl6 þ 2R3I2EcIf3If3l

4

þ R4AE bIfIfl4 þ 2R2I2E bIfIfl4 þ R4 eI3I3GJl4 þ 2R3E bI3I3fIf3If3l
4

þ R4 eI0I0E bI3I3l4 þ 2R3 eI0I0EcIf3If3l
4 þ R2 eI0I0E bIfIfl4 þ 2R3EcIf3If3 eI3I3l4

þ 2R2EcIf3If3fIf3If3l
4 � 2R2EbI3I3 eIfIfl4 þ R4AGJl2 þ 2R2I2GJl2

þ 2R2I2E bI3I3l2 þ 2R3AEcIf3If3l
2 þ 2RI2EcIf3If3l

2 þ R2EbI3I3 eI3I3l2
þ R2 eI0I0GJl2 þ 2RE bI3I3fIf3If3l

2 þ EbI3I3 eIfIfl2 þ R2AE bI3I3�; ð39bÞ

C3 ¼
El2

R2
ðR2l2 � 1Þ2ðE #II3 #IIfl

2 þ GJ #II3 � E #II
2

f3l
2Þ: ð39cÞ

In case of CASE 3, natural frequencies for out-of-plane free vibration can be determined
by applying the similar procedures to the energy functional (32b).

4. THIN-WALLED CURVED BEAM ELEMENT

For spatial free vibration analysis of curved beams, two types of non-symmetric thin-
walled curved beam elements associated with the extensional and the inextensional theory,
respectively, are introduced in this section.
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4.1. THE CURVED BEAM ELEMENT ALLOWING THE EXTENSIBILITY

Figure 3 shows the nodal displacement vector of thin-walled curved beam element
including restrained warping effect. In order to accurately express the deformation of
element, pertinent shape functions are necessary. In this study, the third order Hermitian
polynomials are adopted to interpolate displacement parameters that are defined at the
centroid axis. This curved beam element has two nodes and eight degrees of freedom per a
node. As a results, the element displacement parameters Ux; Uy; Uz; y can be interpolated
with respect to the nodal displacements as follows:

Ux ¼ h1u
p þ h2gp þ h3uq þ h4g

q; Uy ¼ h1v
p þ h2o

p
3 þ h3v

q þ h4o
q
3; ð40a; bÞ

Uz ¼ h1wp � h2o
p
2 þ h3w

q � h4w
q
2; y ¼ h1o

p
1 � h2f p þ h3o

q
1 � h4f

q; ð40c; dÞ

where

up ¼ Uxð0Þ; vp ¼ Uyð0Þ; wp ¼ Uzð0Þ; op
1 ¼ yð0Þ;

op
2 ¼ �U 0

zð0Þ; op
3 ¼ U 0

yð0Þ; f p ¼ �y0ð0Þ; gp ¼ U 0
xð0Þ ð41Þ

and hi is the third order Hermitian polynomials as follows:

h1 ¼ 2x3 � 3x2 þ 1; h2 ¼ ðx3 � 2x2 þ xÞL;
h3 ¼ �2x3 þ 3x2; h4 ¼ ðx3 � x2ÞL; ð42Þ

where

x ¼ x1=L:

Substituting the interpolating functions, material and cross-sectional properties into
equations (10) and (12) including the thickness–curvature effects and equations (18) and
(19) neglecting them and integrating along the element length, the total potential energy of
thin-walled curved beam element is obtained in matrix form as

P ¼ 1

2
UT

e ðKe � o2MeÞUe; ð43Þ

where

Ue ¼ hu p; v p;w p;o p
1;o

p
2;o

p
3; f p; g p; u q; v q;w q;o q

1;o
q
2;o

q
3; f q; g qi: ð44Þ

In the above equation, Ke and Me=16� 16 element elastic stiffness and mass matrices in
local co-ordinate, respectively; Ue the nodal displacement vector. Stiffness and mass
matrices are evaluated using the Gauss integration scheme. Before assembling element
matrices into global matrices, it is necessary to introduce the following rotational and axial
nodal displacement components including curvature effect:
Figure 3. Nodal displacement vector of curved beam element with extensional theory.
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#oop
2 ¼ �U 0

zð0Þ þ
Uxð0Þ

R
¼ #oop

2 þ
up

R
; ð45aÞ

#ff
p ¼ �y0ð0Þ �

U 0
yð0Þ
R

¼ f p � op
3

R
; ð45bÞ

#ggp ¼ U 0
xð0Þ þ

Uzð0Þ
R

¼ gp þ wp

R
: ð45cÞ

For the evaluation of the element stiffness matrix corresponding to the newly defined
nodal displacement components, the transformation equation between the nodal
displacement vector Ue and the new displacement vector cUeUe consisting the effect of
curvature is introduced as follows:

Ua ¼ T1
#UUa; a ¼ p; q; ð46Þ

where

UT
a ¼ fua va wa oa

1 o
a
2 o

a
3 f a gag; cUT

aUT
a ¼ fua va wa oa

1
coa
2oa
2 o

a
3
bf af a bgagag: ð47Þ

and

T1 ¼

1 � � � � � � �
� 1 � � � � � �
� � 1 � � � � �
� � � 1 � � � �

�1=R � � � 1 � � �
� � � � � 1 � �
� � � � � 1=R 1 �
� � �1=R � � � � 1

2666666666666664

3777777777777775
: ð48Þ

Transforming equation (43) using equation (48) and invoking the stationary condition,
the eigenvalue problem is obtained as follows:cKeKe

cUeUe; o2 ¼ cMeMe
cUeUe; ð49Þ

where cUeUe ¼ hu p; v p;w p;o p
1;
co p

2o p
2;o

p
3;
bf pf p; bgpgp; uq; vq;wq;oq

1;
coq
2oq
2;o

q
3;
bf qf q; bgqgqi ð50Þ

and matrices and vectors in equation (49) are evaluated as follows:

#KKe ¼ TTKeT; Ue ¼ T #UUe; ð51Þ

where

T ¼
T1 �
� T1

" #
: ð52Þ

Now, using the direct stiffness method, the matrix equilibrium equation for the elastic
free vibration analysis of non-symmetric thin-walled curved beam is obtained as follows:

KEU ¼ o2MEU ð53Þ

where KE and ME are global elastic stiffness and mass matrices respectively.

- - - - - -

-
-
-
-
-
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4.2. THE CURVED BEAM ELEMENT UNDER THE INEXTENSIONAL CONSTRAINT

Figure 4 shows the nodal displacement vector of thin-walled curved beam elements
considering the inextensibility condition (14). Because only the axial displacement term
contains the third order derivative in the elastic strain energy (15), the axial displacement
Ux and the remaining displacements Uy; y are interpolated using Hermitian polynomials
of the fifth and the third order respectively. As a results, this curved beam element has two
nodes and seven nodal degrees of freedom and the element displacement functions can be
assumed with respect to the nodal displacements as follows:

Ux ¼ H1u
p þ H2 �w p

R

� �
þ H3 �o p

2

R

� �
þ H4u

q þ H5 �w q

R

� �
þ H6 �oq

2

R

� �
; ð54aÞ

Uy ¼ h1v
p þ h2o

p
3 þ h3v

q þ h4o
q
3; Uz ¼ �RU 0

x; ð54b; cÞ

y ¼ h1o
p
1 � h2f

p þ h3o
q
1 � h4f q; ð54dÞ

where

u p ¼ Uxð0Þ; v p ¼ Uyð0Þ; w p ¼ RU 0
xð0Þ;

o p
1 ¼ yð0Þ; o p

2 ¼ RU 00
x ð0Þ; o p

3 ¼ U 0
yð0Þ; f p ¼ �y0ð0Þ ð55Þ

and Hi is the fifth order Hermitian polynomials as follows:

H1 ¼ �6x5 þ 15x4 � 10x3 þ 1; H2 ¼ ð�3x5 þ 8x4 � 6x3 þ xÞL;
H3 ¼ ð�0�5x5 þ 1�5x4 � 1�5x3 þ 0�5x2ÞL2; H4 ¼ 6x5 � 15x4 þ 10x3;

H5 ¼ ð�3x5 þ 7x4 � 4x3ÞL; H6 ¼ ð0�5x5 � x4 þ 0�5x3ÞL2; ð56Þ
Substituting equation (54) into equations (15) and (16) and integrating along the

element length, the potential energy of the second curved beam element are the same as
equation (43), but Ke and Me become 14� 14 element elastic stiffness and mass matrices
respectively. In addition, a rotational nodal displacement including the curvature effect is
defined as follows: cop

2op
2 ¼ RU 00

x ð0Þ þ
Uxð0Þ

R
¼ Rkp

2 þ
up

R
: ð57Þ

Next, the transformation equation similar to equation (46) is obtained as follows:

Ua ¼ T2
#UUa; a ¼ p; q: ð58Þ

where

UT
a ¼ fua va wa oa

1 o
a
2 o

a
3 f ag; c

UT
aUT
a ¼ fua va wa oa

1
coa
2oa
2 o

a
3
bf af ag ð59Þ
Figure 4. Nodal displacement vector of curved beam element with inextensional theory.
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and

T2 ¼

1 � � � � � �
� 1 � � � � �
� � �1=R � � � �
� � � 1 � � �

�1=R2 � � � 1=R � �
� � � � � 1 �
� � � � � 1=R 1

2666666666664

3777777777775
: ð60Þ

Through the similar procedure, the 14� 14 element stiffness and mass matrices with
respect to the element nodal displacement defined by equation (61) are evaluated and the
eigenvalue problem corresponding to the thin-walled curved beam element under the
inextensibility condition is constructed.

#UUe ¼ hup; vp;wp;op
1;
cop
2op
2;o

p
3;
bf pf p; uq; vq;wq;oq

1;
coa
2oa
2;o

a
3;
bf qf qi: ð61Þ

5. NUMERICAL EXAMPLES

The total potential energy functionals have been derived and analytical and numerical
analysis procedures have been developed for spatial free vibrations of non-symmetric thin-
walled curved beams. In this section, four numerical examples are presented to investigate
the influence of thickness–curvature terms and inextensibility for decoupled and coupled
vibration behaviors of curved beams according to the various values of subtended angle,
length of beam and boundary conditions. Three types of analytical and numerical
solutions (CASE 1, CASE 2, CASE 3) analysed by the present theory and method are
presented and compared with previously published results or with solutions by ABAQUS’
9-noded shell element.

5.1. IN-PLANE FREE VIBRATION OF CURVED BEAMS WITH SQUARE CROSS-SECTIONS

In this example, for the purpose to compare the results by the proposed theory with
those by Chidamparam and Leissa [8] based on the equation (22), in-plane vibration
behaviors of the simply supported curved beam with square cross-sections are examined
with keeping the radius constant but increasing the subtended angle. Material and
geometrical data used for vibration analysis are follows:

E ¼ 73 000 kg=cm2; r ¼ 0�00785 kg=cm3; b ¼ h ¼ 1 cm; R ¼ 100 cm:

The analytical solutions (CASE 1, CASE 2, CASE 2*, CASE 3) by this study for the
lowest four frequencies of the hinged curved beam are presented in Table 1 with results by
Chidamparam and Leissa’s extensional and inextensional theory [8], in which CASE 2*
denotes CASE 2 neglecting rotary inertia effects. Comparting the results by CASE 1 and
CASE 3 under the extensional condition as well as those by CASE 2* and Chidamparam
and Leissa [8] under inextensional condition, respectively, it can be noted that the
curvature ratio h=R in this example is so small that the influence of thickness-curvature
terms is negligible. However, it is found that for a small subtended angle there is a little
differences due to rotary inertia between the results by CASE 3 Chidamparam and Leissa
[8] under the extensional condition and those by CASE 2 and CASE 2* under the
inextensional condition. The maximum difference due to rotary inertia effects is 4�1% and



Table 1

In-plane natural frequencies of simply supported beam o2

Extensional theory Inextensional theory

Y (deg)Mode Reference [8] CASE 3 CASE 1 Reference [8] CASE 2 CASE 2*

10 1 1564�99 1560�77 1556�79 12 965�5 12 827�7 12 965�7
2 12 963�4 12 825�5 12 826�5 59 270�2 57 990�2 59 271�2
3 65 897�8 64 336�4 64 335�5 208 049�0 199 445�0 208 053�0
4 207 855�0 199 285�0 199 312�0 490 683�0 460 621�0 490 691�0

100 1 0�89978 0�89971 0�89976 0�89987 0�89981 0�89988
2 5�20349 5�20249 5�20297 5�20804 5�20711 5�20811
3 19�0183 19�0108 19�0120 19�0224 19�0152 19�0227
4 46�7779 46�7489 46�7534 46�8831 46�8546 46�8839

180 1 0�03981 0�03981 0�03981 0�03982 0�03982 0�03982
2 0�37139 0�37137 0�37139 0�37143 0�37142 0�37144
3 1�51381 1�51366 1�51374 1�51399 1�51386 1�51401
4 4�03414 4�03344 4�03369 4�03524 4�03460 4�03530

360 1 0�00000 0�00000 0�00000 0�00000 0�00000 0�00000
2 0�00629 0�00629 0�00629 0�00629 0�00629 0�00629
3 0�04638 0�04638 0�04638 0�04639 0�04639 0�04639
4 0�16373 0�16372 0�16373 0�16374 0�16373 0�16374
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6.1% at the fourth natural frequency for the subtended angle Y ¼ 108 for the extensional
and inextensional case respectively.

5.2. SIMPLY SUPPORTED CURVED BEAM WITH MONOSYMMETRIC SECTIONS

The simply supported beam and its monosymmetric cross-section are shown in Figure 5.
Natural frequencies of thin-walled curved beams with the channel section monosymmetric
for x3 axis is investigated. Geometric and material properties of the monosymmetric cross-
section defined at the centroidal axis are as follows:

A ¼ 12�5 cm2; E ¼ 73 000 kg=cm2; G ¼ 28 000 kg=cm2;

J ¼ 1�0417 cm4; r ¼ 0�00785 kg=cm3; I2 ¼ 133�3854 cm4;

I3 ¼ 67�9167 cm4; I222 ¼ �100�0 cm5; I233 ¼ �41�6667 cm5;

If ¼ 5682�1302 cm6; If3 ¼ �585�1282 cm5; If23 ¼ �282�0513 cm6;

Iff2 ¼ 7465�7298 cm7; L ¼ 100 cm and 400 cm:

In this example, in-plane and out-of plane vibrational modes are decoupled and the
curved beam is modelled by 20 curved beam elements. Also, the total beam length remains
constant but the radius of curvature becomes small as the subtended angle is large. The
natural frequencies corresponding to in-plane and out-of-plane modes are evaluated using
both the analytical and numerical method developed in this study.

Tables 2 and 3 show the in-plane and out-of-plane natural frequencies for the various
subtended angles of curved beams having the total length of 100 and 400 cm respectively.
In the whole range of subtended angles, it is shown that the analytical solutions are in
excellent agreement with results by the curved beam element. It is important to point out
that the differences between results be CASE 1 including the thickness–curvature term and



Figure 5. Shape of curved beam: (a) simply supported curved beam, (b) monosymmetric cross-section.

Table 2

In-plane natural frequencies of beam with monosymmetric section o2

Analytical solution Finite element method

Length (cm)Y (deg)Mode CASE 1 CASE 2 CASE 3 CASE 1 CASE 2 CASE 3

1 294�30 1442�2 297�96 294�30 1442�2 297�96
2 1437�4 6452�5 1427�5 1437�4 6452�5 1427�5

30 3 7131�4 21 126�0 7092�9 7131�9 21 126�0 7093�4
4 9350�1 46576�0 9370�1 9350�1 46576�0 9370�1
5 21 217�0 91 074�0 21 108�0 21 221�0 91 074�0 21 112�0

1 1105�1 1127�0 1071�3 1105�1 1127�0 1071�3
2 1800�3 5989�3 1810�2 1800�4 5989�3 1810�2

100 90 3 6890�8 20 218�0 6770�0 6891�3 20 218�0 6770�0
4 10 586�0 45 950�0 10 691�0 10 586�0 45 950�0 10 691�0
5 21 038�0 90 352�0 20 705�0 21 043�0 90 353�0 20 709�0

1 490�17 501�74 460�54 490�18 501�74 460�55
2 3884�9 4556�8 3577�8 3885�1 4556�8 3578�0

180 3 9227�0 17 412�0 9343�1 9227�2 17 412�0 9343�4
4 12 901�0 43 071�0 12 389�0 12 902�0 43 071�0 12 390�0
5 21 574�0 86 912�0 21 841�0 21 577�0 86 912�0 21 844�0

1 5�8260 5�8272 5�8194 5�8261 5�8272 5�8195
2 12�256 27�107 12�257 12�256 27�107 12�258

30 3 32�501 94�938 32�498 32�503 94�938 32�500
4 94�879 223�60 94�768 94�899 223�60 94�788
5 232�02 476�73 231�78 232�14 476�73 231�90

1 4�4706 4�4759 4�4522 4�4707 4�4759 4�4523
2 24�049 24�740 23�927 24�050 24�740 23�929

400 90 3 88�832 89�180 88�447 88�852 89�180 88�467
4 126�16 216�91 126�17 126�17 216�91 126�18
5 235�29 464�50 234�79 235�40 464�50 234�90

1 1�9471 1�9498 1�9308 1�9471 1�9498 1�9308
2 18�034 18�157 17�853 18�036 18�158 17�855

180 3 73�209 73�687 72�469 73�228 73�687 72�488
4 190�44 195�33 188�37 190�55 195�33 188�47
5 420�78 428�76 416�24 421�25 428�76 416�71
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Table 3

Out-of-plane natural frequencies of beam with monosymmetric section o2

Analytical solution Finite element method

Length (cm) Y (deg) Mode CASE 1 CASE 3 CASE 1 CASE 3

1 21�511 20�918 21�511 20�918
2 99�481 101�34 99�481 104�34

30 3 113�34 110�71 113�39 110�72
4 466�64 455�94 466�66 455�97
5 3269�0 3313�4 3269�1 3313�5

1 5�0717 5�3208 5�0718 5�3210
2 200�63 184�88 200�63 184�89

100 90 3 256�10 237�30 256�10 237�30
4 608�92 566�87 608�96 566�90
5 1685�4 1773�9 1685�4 1773�9

1 0�0000 0�0000 0�0000 0�0000
2 405�96 420�50 405�99 420�50

180 3 550�83 501�14 550�86 501�19
4 884�20 759�99 884�25 760�03
5 1840�4 1678�6 1840�4 1678�6

1 0�0694 0�0696 0�0694 0�0696
2 2�0602 2�0496 2�0602 2�0496

30 3 3�2747 3�2619 3�2747 3�2619
4 4�4294 4�4044 4�4295 4�4045
5 9�3022 9�3315 9�3025 9�3317

1 0�0036 0�0036 0�0036 0�0036
2 0�9167 0�9267 0�9168 0�9268

400 90 3 11�794 11�567 11�794 11�567
4 18�709 18�395 18�709 18�395
5 23�898 24�206 23�904 24�212

1 0�0000 0�0000 0�0000 0�0000
2 0�0971 0�0981 0�0972 0�0982

180 3 3�9362 4�0409 3�9394 4�0442
4 60�272 57�932 60�274 57�935
5 113�76 111�22 113�76 111�22
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those by CASE 3 neglecting it increase as the subtended angle becomes large. Furthermore,
for the identical subtended angle, the influence of thickness–curvature terms is decreased as
the slenderness is large. Particularly, it should be noted that the in-plane vibration analysis
under the inextensibility condition (CASE 2) leads to the erroneous results as the slenderness
is small. As a result, it is judged that the present curved beam theory considering the
thickness–curvature effect and allowing the extensibility gives accurate results for the out-of-
plane as well as in-plane vibrations of the monosymmetric curved beams.

5.3. CLAMPED SEMICIRCULAR BEAMS WITH Z-SECTIONS

In this example, for the freely vibrating clamed semicircular beam with Z-sections of
equal and unequal flanges as shown in Figure 6, numerical solutions by the proposed



Figure 6. Thin-walled semicircular beams with Z-cross-sections: (a) Z1 section, (b) Z2 section; E ¼ 730 887 kg/cm2,
R ¼ 100�0 cm, r ¼ 0�002768 kg/cm3.

Table 4

Natural frequencies of clamped semicircular beam o2

Z1 section Z2 section

This study Reference Shell This study Reference Shell

Mode CASE 1 CASE 2 CASE 3 [30] [36] CASE 1 CASE 2 CASE 3 [30] [36]

1 4�8963 4�8986 4�9086 4�8993 4�5199 6�3765 6�3718 6�3873 6�0800 6�0800
2 23�252 23�252 23�360 23�852 22�777 21�520 21�521 21�495 21�497 21�103
3 107�90 107�90 108�69 114�06 105�60 74�416 74�380 74�640 71�107 76�917
4 166�50 166�79 166�86 168�55 156�79 104�68 104�76 104�56 120�77 102�28
5 336�97 336�97 339�89 335�82 329�87 340�75 341�00 340�95 332�91 339�32
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methods are compared with the results by Gendy and Saleeb [30] and those by the shell
element model taken from reference [36].

Table 4 shows the lowest five vibration frequencies for the two types of cross-sections. In
Table 4, it is observed that the results by the present three models (CASE 1, CASE 2,
CASE 3) are nearly identical to each other and is slightly better that those by Gendy and
Saleeb’ model [30] when comparing with those using the shell element. Because the
slenderness is relatively large in this example, it turns that the thickness–curvature and the
inextensibility have little effects on the free vibration of the clamped curved beam.

5.4. CANTILEVER AND CLAMPED CURVED BEAMS WITH NON-SYMMETRIC SECTIONS

The spatial free vibration analysis of non-symmetric curved beams is performed for the
various subtended angles with clamped–free and clamped–clamped boundary conditions



Figure 7. Thin-walled cantilever beam with non-symmetric cross-section: (a) Geometry of curved beam,
(b) cross-section.
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at both ends. Figure 7 shows a thin-walled curved cantilever beam with non-symmetric
cross-section. The curved beam is modelled using 20 curved beam elements and 300
shell elements of ABAQUS which is the commercial finite element analysis
program respectively. Geometric and material properties for analysis are given as
follows:

A ¼ 7�0 cm2; E ¼ 30 000 kg=cm2; G ¼ 11 500 kg=cm2;

J ¼ 0�5833 cm4; r ¼ 0�00785 kg=cm3; I2 ¼ 67�0476 cm4;

I3 ¼ 8�4286 cm4; I23 ¼ 9�1429 cm4; I222 ¼ 52�2449 cm5;

I233 ¼ �20�0272 cm5; I223 ¼ �17�4150 cm5; I333 ¼ �13�3878 cm5;

If ¼ 272�5442 cm6; If2 ¼ 115�8095 cm5; If3 ¼ 30�4762 cm5;

If22 ¼ 59�2109 cm6; If23 ¼ �107�1020 cm6; If33 ¼ �63�1293 cm6;

Iff2 ¼ 67�1720 cm7; Iff3 ¼ �388�7269 cm7; L ¼ 200 cm:

Table 5 shows the lowest 10 frequencies of curved cantilever for subtended angles varying
from 108 to 1808 with keeping the total length of the cantilever constant. It is found from
Table 5 that the results by CASE 1 are in a good agreement with those by ABAQUS’s shell
elements. Particularly, the influence of thickness–curvature increases up to the maximum
difference 43�1% at the ninth mode for the subtended angle Y ¼ 1808 as the subtended
angle becomes large, but the effect of inextensibility is negligible irrespective of the
variation of subtended angle.

On the other hand, Table 6 shows the lowest 10 frequencies of the curved beam clamped
at both ends with the varying subtended angles. It is interesting to observe that for
clamped curved beam, the thickness–curvature effect is relatively small (the maximum
difference 8�2% at the tenth mode for Y ¼ 1808) when comparing with cantilever curved
beam, but the differences between results by CASE 1 and those by CASE 2 corresponding
to the extensional and inextensional condition, respectively, are noticeable for the small
subtended angles and subsequently decrease as the angle becomes large.



Table 5

Natural frequencies of non-symmetric cantilever curved beam o2

Vibration mode

Y (deg) CASE 1 2 3 4 5 6 7 8 9 10

1 0�0290 0�2686 0�5963 1�5252 5�1373 7�7438 17�386 20�623 27�159 52�344
10 2 0�0290 0�2686 0�5963 1�5252 5�1376 7�7440 17�387 20�625 27�161 52�346

3 0�0290 0�2726 0�6417 1�6072 5�1856 7�7975 17�396 20�679 27�288 52�499
ABAQUS 0�0299 0�2670 0�5887 1�5265 5�0520 7�7433 16�925 20�575 26�645 52�892

1 0�0212 0�2815 0�3747 2�2666 5�0554 7�4328 19�493 20�511 28�177 49�067
30 2 0�0212 0�2815 0�3747 2�2666 5�0576 7�4356 19�499 20�520 28�206 49�081

3 0�0225 0�2825 0�5146 3�2566 5�0755 8�3196 19�695 20�662 29�243 49�820
ABAQUS 0�0213 0�2791 0�3724 2�2487 5�0275 7�3378 19�518 19�935 27�449 49�227

1 0�0107 0�2480 0�3084 2�3788 5�8332 7�1242 18�221 28�219 31�332 44�828
60 2 0�0107 0�2480 0�3084 2�3788 5�8502 7�1246 18�228 28�222 31�439 44�879

3 0�0128 0�2666 0�4267 3�6090 5�8462 11�810 21�142 28�050 33�768 49�133

1 0�0062 0�2061 0�2901 2�0272 5�2139 7�3646 17�473 32�844 37�949 47�721
90 2 0�0062 0�2061 0�2901 2�0272 5�2345 7�3687 17�476 33�022 37�951 47�823

3 0�0072 0�2554 0�3499 3�0204 5�3567 11�999 29�567 32�644 40�216 59�173
ABAQUS 0�0060 0�2043 0�2779 2�1714 5�0293 7�1815 17�079 32�233 36�624 43�574

1 0�0043 0�1608 0�2945 1�6893 4�3515 7�0502 16�728 34�383 36�373 67�954
120 2 0�0043 0�1608 0�2946 1�6894 4�3670 7�0564 16�729 34�654 36�404 67�994

3 0�0047 0�2223 0�3154 2�5051 4�5662 10�733 29�483 34�388 57�156 69�610

1 0�0034 0�1222 0�3141 1�3938 3�6529 6�4512 15�798 33�813 34�377 68�559
150 2 0�0034 0�1222 0�3143 1�3939 3�6627 6�4564 15�797 34�068 34�466 68�569

3 0�0042 0�1693 0�3279 2�0697 3�8755 9�4714 26�832 34�092 61�301 90�192

1 0�0030 0�0929 0�3462 1�1389 3�1403 5�7825 14�724 31�503 32�765 64�026
180 2 0�0030 0�0929 0�3464 1�1389 3�1459 5�7861 14�724 31�742 32�852 64�045

3 0�0047 0�1248 0�3607 1�6979 3�3532 8�3370 24�186 32�119 57�632 108�30
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6. CONCLUSIONS

Three types of the total potential energy depending on whether the thickness–curvature
effect and the extensional condition are taken into account or not were presented by
applying the principle of virtual work and considering the restrained warping effects based
on Vlasov’s assumption. Not only analytical solutions were exactly derived for in-plane
and out-of-plane free vibration of monosymmetric thin-walled curved beam, but also
numerical solutions by the two curved beam elements and ABAQUS’ shell elements were
presented for spatial free vibration analysis. Through numerical examples, effects of
thickness–curvature and the extensibility condition were investigated on the spatial
vibrational behavior according to the various values of subtended angle, length of beam
and boundary conditions. Consequently it is judged that the analytical and numerical
method by the curved beam theory (CASE 1) considering the thickness–curvature effects
as well as the extensional condition provides accurate solutions for spatial free vibration
problems of non-symmetric thin-walled curved beams though the slenderness or the radius
of curvature are relatively small.



Table 6

Natural frequencies of non-symmetric clamped curved beam o2

Vibration mode

Y (deg) CASE 1 2 3 4 5 6 7 8 9 10

1 0�9488 4�4120 6�3262 17�732 18�778 21�295 49�634 59�534 99�775 119�58
10 2 0�9493 6�3262 9�2795 18�779 20�772 49�633 56�592 99�571 119�60 147�68

3 0�9499 4�4051 6�3430 17�747 18�732 21�362 49�847 59�341 100�24 119�61
ABAQUS 0�9679 4�3543 6�4045 16�946 18�565 21�369 50�231 58�585 100�44 105�01

1 0�8338 5�3737 10�799 18�125 22�087 31�469 45�206 68�388 93�079 123�91
30 2 0�8338 5�3737 13�512 18�437 22�090 45�206 62�435 92�940 124�05 158�82

3 0�8359 5�4161 10�723 18�322 21�931 31�500 45�787 67�772 94�364 123�88
ABAQUS 0�8479 5�4097 10�605 18�235 21�878 30�386 45�524 67�401 93�276 107�62

1 0�7753 4�4992 15�392 24�041 27�515 39�667 60�538 84�626 104�35 131�16
60 2 0�7762 4�4992 15�398 25�143 27�539 39�667 71�000 84�752 131�60 155�73

3 0�7759 4�5586 15�721 23�694 27�207 40�663 60�169 86�752 103�51 130�79

1 0�7223 3�9916 13�570 31�829 35�223 41�852 71�047 80�658 138�20 148�88
90 2 0�7235 3�9916 13�584 31�917 35�222 42�313 73�552 83�604 138�38 149�59

3 0�7216 4�0530 13�962 31�475 36�513 41�029 71�677 81�803 139�78 151�96
ABAQUS 0�7020 3�9088 13�388 30�838 34�855 37�792 69�831 78�659 115�15 140�53

1 0�6446 3�6238 12�257 31�523 33�616 64�519 68�869 86�169 130�81 165�18
120 2 0�6454 3�6238 12�270 31�534 33�792 64�526 69�404 90�072 130�81 166�21

3 0�6443 3�6829 12�670 32�459 33�912 63�567 71�618 84�685 138�23 162�03

1 0�5522 3�2906 11�259 28�378 32�733 62�680 90�153 96�772 121�55 193�33
150 2 0�5527 3�2906 11�269 28�400 32�980 62�806 91�901 98�694 121�57 194�13

3 0�5538 3�3493 11�673 29�560 33�070 66�801 88�379 93�820 130�46 187�23

1 0�4589 2�9571 10�422 25�347 30�400 58�225 93�334 113�14 131�99 200�85
180 2 0�4592 2�9570 10�429 25�400 30�642 58�290 96�387 113�17 132�22 201�02

3 0�4626 3�0185 10�830 26�378 31�101 62�694 91�594 122�99 127�40 218�69
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